Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2501: 53-69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857222

RESUMEN

Research on type 1 rhodopsins spans now a history of 50 years. Originally, just archaeal ion pumps and sensors have been discovered. However, with modern genetic techniques and gene sequencing tools, more and more proteins were identified in all kingdoms of life. Spectroscopic and other biophysical studies revealed quite diverse functions. Ion pumps, sensors, and channels are imprinted in the same seven-helix transmembrane protein scaffold carrying a retinal prosthetic group. In this review, molecular biology methods are described, which enabled the elucidation of their function and structure leading to optogenetic applications.


Asunto(s)
Optogenética , Rodopsinas Microbianas , Archaea/genética , Archaea/metabolismo , Biología Molecular , Optogenética/métodos , Rodopsina/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
2.
Nat Struct Mol Biol ; 29(5): 440-450, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484235

RESUMEN

Hydrogen bonds are fundamental to the structure and function of biological macromolecules and have been explored in detail. The chains of hydrogen bonds (CHBs) and low-barrier hydrogen bonds (LBHBs) were proposed to play essential roles in enzyme catalysis and proton transport. However, high-resolution structural data from CHBs and LBHBs is limited. The challenge is that their 'visualization' requires ultrahigh-resolution structures of the ground and functionally important intermediate states to identify proton translocation events and perform their structural assignment. Our true-atomic-resolution structures of the light-driven proton pump bacteriorhodopsin, a model in studies of proton transport, show that CHBs and LBHBs not only serve as proton pathways, but also are indispensable for long-range communications, signaling and proton storage in proteins. The complete picture of CHBs and LBHBs discloses their multifunctional roles in providing protein functions and presents a consistent picture of proton transport and storage resolving long-standing debates and controversies.


Asunto(s)
Proteínas , Protones , Enlace de Hidrógeno
3.
Sci Rep ; 11(1): 10774, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031444

RESUMEN

Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected.

4.
Chem Rev ; 118(21): 10629-10645, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29882660

RESUMEN

Early research on the four microbial rhodopsins discovered in the archaeal Halobacterium salinarum revealed a structural template that served as a scaffold for two different functions: light-driven ion transport and phototaxis. Bacteriorhodopsin and halorhodopsin are proton and chloride pumps, respectively, while sensory rhodopsin I and II are responsible for phototactic behavior of the archaea. Halorhodopsins have been identified in various other species. Besides this group of archaeal halorhodopsins distinct chloride transporting rhodopsins groups have recently been identified in other organism like Flavobacteria or Cyanobacteria. Halorhodopsin from Natronomonas pharaonis is the best-studied homologue because of its facile expression and purification and its advantageous properties, which was the reason to introduce this protein as neural silencer into the new field of optogenetics. Two other major families of genetically encoded silencing proteins, proton pumps and anion channels, extended the repertoire of optogenetic tools. Here, we describe the functional and structural characteristics of halorhodopsins. We will discuss the data in light of common principles underlying the mechanism of ion pumps and sensors and will review biophysical and biochemical aspects of neuronal silencers.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Animales , Bacteriorodopsinas/genética , Sitios de Unión , Transporte Biológico , Halorrodopsinas/genética , Humanos , Modelos Moleculares , Optogenética , Procesos Fotoquímicos , Conformación Proteica
5.
PLoS One ; 13(5): e0197659, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29791485

RESUMEN

The cellular prion protein (PrPC) is implicated in neuroprotective signaling and neurotoxic pathways in both prion diseases and Alzheimer's disease (AD). Specifically, the intrinsically disordered N-terminal domain (N-PrP) has been shown to interact with neurotoxic ligands, such as Aß and Scrapie prion protein (PrPSc), and to be crucial for the neuroprotective activity of PrPC. To gain further insight into cellular pathways tied to PrP, we analyzed the brain interactome of N-PrP. As a novel approach employing recombinantly expressed PrP and intein-mediated protein ligation, we used N-PrP covalently coupled to beads as a bait for affinity purification. N-PrP beads were incubated with human AD or control brain lysates. N-PrP binding partners were then identified by electrospray ionization tandem mass spectrometry (nano ESI-MS/MS). In addition to newly identified proteins we found many previously described PrP interactors, indicating a crucial role of the intrinsically disordered part of PrP in mediating protein interactions. Moreover, some interactors were found only in either non-AD or AD brain, suggesting aberrant PrPC interactions in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas PrPC/metabolismo , Resinas Acrílicas , Anciano de 80 o más Años , Encéfalo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Polietilenglicoles , Dominios y Motivos de Interacción de Proteínas , Espectrometría de Masa por Ionización de Electrospray
6.
J Biol Chem ; 293(21): 8020-8031, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29636413

RESUMEN

A central step in the pathogenesis of prion diseases is the conformational transition of the cellular prion protein (PrPC) into the scrapie isoform, denoted PrPSc Studies in transgenic mice have indicated that this conversion requires a direct interaction between PrPC and PrPSc; however, insights into the underlying mechanisms are still missing. Interestingly, only a subfraction of PrPC is converted in scrapie-infected cells, suggesting that not all PrPC species are suitable substrates for the conversion. On the basis of the observation that PrPC can form homodimers under physiological conditions with the internal hydrophobic domain (HD) serving as a putative dimerization domain, we wondered whether PrP dimerization is involved in the formation of neurotoxic and/or infectious PrP conformers. Here, we analyzed the possible impact on dimerization of pathogenic mutations in the HD that induce a spontaneous neurodegenerative disease in transgenic mice. Similarly to wildtype (WT) PrPC, the neurotoxic variant PrP(AV3) formed homodimers as well as heterodimers with WTPrPC Notably, forced PrP dimerization via an intermolecular disulfide bond did not interfere with its maturation and intracellular trafficking. Covalently linked PrP dimers were complex glycosylated, GPI-anchored, and sorted to the outer leaflet of the plasma membrane. However, forced PrPC dimerization completely blocked its conversion into PrPSc in chronically scrapie-infected mouse neuroblastoma cells. Moreover, PrPC dimers had a dominant-negative inhibition effect on the conversion of monomeric PrPC Our findings suggest that PrPC monomers are the major substrates for PrPSc propagation and that it may be possible to halt prion formation by stabilizing PrPC dimers.


Asunto(s)
Neuroblastoma/prevención & control , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , Multimerización de Proteína , Scrapie/prevención & control , Animales , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Neuroblastoma/patología , Transporte de Proteínas , Scrapie/patología , Células Tumorales Cultivadas
7.
Photochem Photobiol ; 93(3): 796-804, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28500714

RESUMEN

Archaeal photoreceptors consist of sensory rhodopsins in complex with their cognate transducers. After light excitation, a two-component signaling chain is activated, which is homologous to the chemotactic signaling cascades in enterobacteria. The latter system has been studied in detail. From structural and functional studies, a picture emerges which includes stable signaling complexes, which assemble to receptor arrays displaying hexagonal structural elements. At this higher order structural level, signal amplification and sensory adaptation occur. Here, we describe electron microscopy data, which show that also the archaeal phototaxis receptors sensory rhodopsin I and II in complex with their cognate transducers can form hexagonal lattices even in the presence of a detergent. This result could be confirmed by molecular dynamics calculations, which revealed similar structural elements. Calculations of the global modes of motion displayed one mode, which resembles the "U"-"V" transition of the NpSRII:NpHtrII complex, which was previously argued to represent a functionally relevant global conformational change accompanying the activation process [Ishchenko et al. (2013) J. Photochem. Photobiol. B 123, 55-58]. A model of cooperativity at the transmembrane level is discussed.


Asunto(s)
Proteínas Arqueales/química , Biopolímeros/química , Rodopsinas Sensoriales/química , Microscopía Electrónica , Modelos Moleculares , Polimerizacion
8.
J Pept Sci ; 22(5): 246-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27114253

RESUMEN

The chemical synthesis of proteins has been the wish of chemists since the early 19th century. There were decisive methodological steps necessary to accomplish this aim. Cornerstones were the introduction of the Z-protecting group of Bergmann and Zervas, the development of Solid-phase Peptide Synthesis of Merrifield, and the establishment of Native Chemical Ligation by Kent. Chemical synthesis of proteins has now become generally applicable technique for the synthesis of proteins with tailor made properties which can be applied not only in vitro but also in vivo .Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Técnicas de Química Sintética/historia , Péptidos/síntesis química , Técnicas de Química Sintética/métodos , Historia del Siglo XX , Historia del Siglo XXI , Péptidos/química , Péptidos/historia , Proteínas/química
9.
J Phys Chem B ; 120(19): 4383-7, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27111635

RESUMEN

Sensory rhodopsin II (SRII) is the primary light sensor in the photophobic reaction of the halobacterium Natronomonas pharaonis. Photoactivation of SRII results in a movement of helices F and G of this seven-helical transmembrane protein. This conformational change is conveyed to the transducer protein (HtrII). Global changes in the protein backbone have been monitored by IR difference spectroscopy by recording frequency shifts in the amide bands. Here we investigate local structural changes by judiciously inserting thiocyanides at different locations of SRII. These vibrational Stark probes absorb in a frequency range devoid of any protein vibrations and respond to local changes in the dielectric, electrostatics, and hydrogen bonding. As a proof of principle, we demonstrate the use of Stark probes to test the conformational changes occurring in SRII 12 ms after photoexcitation and later. Thus, a methodology is provided to trace local conformational changes in membrane proteins by a minimal invasive probe at the high temporal resolution inherent to IR spectroscopy.


Asunto(s)
Proteínas Arqueales/química , Rodopsinas Sensoriales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Halobacterium/metabolismo , Enlace de Hidrógeno , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
10.
PLoS Comput Biol ; 11(10): e1004561, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26496122

RESUMEN

Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors.


Asunto(s)
Halobacteriaceae/química , Modelos Químicos , Simulación de Dinámica Molecular , Estimulación Luminosa/métodos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/ultraestructura , Adaptación Ocular/efectos de la radiación , Proteínas Arqueales/química , Proteínas Arqueales/efectos de la radiación , Proteínas Arqueales/ultraestructura , Carotenoides/química , Carotenoides/efectos de la radiación , Simulación por Computador , Halobacteriaceae/efectos de la radiación , Luz , Modelos Biológicos , Fotorreceptores Microbianos/efectos de la radiación , Conformación Proteica/efectos de la radiación , Dosis de Radiación
11.
Biochemistry ; 54(2): 349-62, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25489970

RESUMEN

In halophilic archaea the photophobic response is mediated by the membrane-embedded 2:2 photoreceptor/-transducer complex SRII/HtrII, the latter being homologous to the bacterial chemoreceptors. Both systems bias the rotation direction of the flagellar motor via a two-component system coupled to an extended cytoplasmic signaling domain formed by a four helical antiparallel coiled-coil structure. For signal propagation by the HAMP domains connecting the transmembrane and cytoplasmic domains, it was suggested that a two-state thermodynamic equilibrium found for the first HAMP domain in NpSRII/NpHtrII is shifted upon activation, yet signal propagation along the coiled-coil transducer remains largely elusive, including the activation mechanism of the coupled kinase CheA. We investigated the dynamic and structural properties of the cytoplasmic tip domain of NpHtrII in terms of signal transduction and putative oligomerization using site-directed spin labeling electron paramagnetic resonance spectroscopy. We show that the cytoplasmic tip domain of NpHtrII is engaged in a two-state equilibrium between a dynamic and a compact conformation like what was found for the first HAMP domain, thus strengthening the assumption that dynamics are the language of signal transfer. Interspin distance measurements in membranes and on isolated 2:2 photoreceptor/transducer complexes in nanolipoprotein particles provide evidence that archaeal photoreceptor/-transducer complexes analogous to chemoreceptors form trimers-of-dimers or higher-order assemblies even in the absence of the cytoplasmic components CheA and CheW, underlining conservation of the overall mechanistic principles underlying archaeal phototaxis and bacterial chemotaxis systems. Furthermore, our results revealed a significant influence of the NpHtrII signaling domain on the NpSRII photocycle kinetics, providing evidence for a conformational coupling of SRII and HtrII in these complexes.


Asunto(s)
Archaea/química , Proteínas Arqueales/química , Carotenoides/química , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Carotenoides/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Marcadores de Spin , Termodinámica
12.
FEBS Lett ; 588(21): 3970-6, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25240192

RESUMEN

HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain's dynamics into the current model.


Asunto(s)
Luz , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Modelos Moleculares , Estructura Terciaria de Proteína/efectos de la radiación
13.
J Pept Sci ; 20(2): 137-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24395811

RESUMEN

Negative phototaxis in Archaea is mediated by the sensory rhodopsin II/transducer complex (NpSRII/NpHtrII). After light excitation, the signal is relayed from the receptor to NpHtrII where a rotary motion of TM2 in the membrane domain (NpHtrII1-114) is induced. This conformational change is transferred to the downstream two-component signaling cascade. Here, we describe the chemical synthesis of this membrane domain, which consists of the two transmembrane helices TM1 and TM2. NpHtrII1-114 was synthesized using two sequential ligation steps. The first ligation between NpHtrII47-59 and NpHtrII60-114 was performed in organic solvents, whereas the final ligation was successful in an aqueous buffer that contained a detergent and a denaturant. The product was refolded into micelles and showed functional properties as determined by binding studies to its cognate receptor NpSRII and by photocycle experiments. This work demonstrates that membrane proteins can be successfully synthesized by chemical means paving the way for tailor-made modifications.


Asunto(s)
Técnicas de Química Sintética , Proteínas de la Membrana/síntesis química , Rodopsinas Sensoriales/síntesis química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Proteínas de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Rodopsinas Sensoriales/química
14.
Biochim Biophys Acta ; 1837(5): 533-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23994288

RESUMEN

We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Asunto(s)
Bacteriorodopsinas/química , Halorrodopsinas/química , Fotobiología/historia , Rodopsinas Sensoriales/química , Archaea/química , Archaea/fisiología , Bacteriorodopsinas/metabolismo , Transporte Biológico , Cloruros/metabolismo , Chlorophyta/química , Chlorophyta/fisiología , Euryarchaeota/química , Euryarchaeota/fisiología , Halorrodopsinas/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Luz , Fototransducción , Modelos Moleculares , Fotobiología/instrumentación , Fotobiología/métodos , Rodopsinas Sensoriales/metabolismo
15.
Angew Chem Int Ed Engl ; 53(2): 591-4, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24282071

RESUMEN

The photochemical properties of indigo, a widely used industrial dye, has attracted both experimentalists and theoreticians from the beginning. Especially the high photostability of indigo has been the subject of intensive research. Recently, it was proposed that after photoexcitation an intramolecular proton transfer followed by a nonradiative relaxation to the ground state promote photostability. In indigo the hydrogen bond and the proton transfer occur between the opposing hemiindigo parts. Here, we provide experimental and theoretical evidence that a hydrogen transfer within one hemiindigo or hemithioindigo part is sufficient to attain photostability. This concept can serve as an interesting strategy towards new photostable dyes for the visible part of the spectrum.


Asunto(s)
Carmin de Índigo/análogos & derivados , Carmin de Índigo/química , Protones , Estabilidad de Medicamentos , Carmin de Índigo/efectos de la radiación , Isomerismo , Modelos Químicos , Modelos Moleculares , Fotoquímica , Rayos Ultravioleta
16.
J Biol Chem ; 288(20): 13961-13973, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23532840

RESUMEN

Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Hormonas/metabolismo , Neuropéptidos/metabolismo , Señales de Clasificación de Proteína , Animales , Línea Celular , Sistema Libre de Células , Dicroismo Circular , ADN Complementario/metabolismo , Endopeptidasa K/metabolismo , Escherichia coli/metabolismo , Humanos , Ratones , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
17.
Sensors (Basel) ; 13(1): 455-62, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23271605

RESUMEN

Bacteriorhodopsin protein (bR)-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO) electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM) can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices.


Asunto(s)
Bacteriorodopsinas/metabolismo , Colodión/metabolismo , Electroquímica/métodos , Halobacterium salinarum/metabolismo , Fotoquímica/métodos , Membrana Púrpura/metabolismo , Impedancia Eléctrica , Concentración de Iones de Hidrógeno , Luz , Membrana Púrpura/efectos de la radiación
18.
J Biomol NMR ; 54(4): 377-87, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23143278

RESUMEN

We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such "in silico" data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR ( http://www.wenmr.eu/services/FANDAS ).


Asunto(s)
Bases de Datos Factuales , Resonancia Magnética Nuclear Biomolecular/métodos , Programas Informáticos , Algoritmos , Sitios de Unión , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Rodopsinas Sensoriales/química
19.
J Pept Sci ; 18(5): 312-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22431434

RESUMEN

Native chemical ligation of unprotected peptides in organic solvents has been previously reported as a fast, efficient, and suitable method for coupling of hydrophobic peptides. However, it has not been determined whether the reaction can be carried out without possible side reactions or racemization. Here, we present a study on the chemoselectivity of this method by model reactions designed to test the reactivity of Arg and Lys side chains as well as that of α-amino groups. A possible racemization of the C-terminal amino acid of the N-terminal peptide was also investigated. The results show that ligation in organic solvents can be conducted chemoselectively without side reactions with other nucleophilic groups. Furthermore, no racemization of the C-terminal amino acid was observed if both educts were added simultaneously. Thus, native chemical ligation can be performed either in aqueous buffer systems or in organic solvents paving the way for the synthesis of larger hydrophobic peptides and/or membrane proteins.


Asunto(s)
Dimetilformamida/química , Péptidos/química , Péptidos/síntesis química , Solventes/química , Interacciones Hidrofóbicas e Hidrofílicas , Estereoisomerismo
20.
J Mol Biol ; 412(4): 591-600, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21840321

RESUMEN

The molecular mechanism of transmembrane signal transduction is still a pertinent question in cellular biology. Generally, a receptor can transfer an external signal via its cytoplasmic surface, as found for G-protein-coupled receptors such as rhodopsin, or via the membrane domain, such as that in sensory rhodopsin II (SRII) in complex with its transducer, HtrII. In the absence of HtrII, SRII functions as a proton pump. Here, we report on the crystal structure of the active state of uncomplexed SRII from Natronomonas pharaonis, NpSRII. The problem with a dramatic loss of diffraction quality upon loading of the active state was overcome by growing better crystals and by reducing the occupancy of the state. The conformational changes in the region comprising helices F and G are similar to those observed for the NpSRII-transducer complex but are much more pronounced. The meaning of these differences for the understanding of proton pumping and signal transduction by NpSRII is discussed.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Bombas de Protones/metabolismo , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Cristalización , Cristalografía por Rayos X , Halobacteriaceae/metabolismo , Modelos Biológicos , Modelos Moleculares , Natronobacterium/química , Pliegue de Proteína , Estructura Terciaria de Proteína , Bombas de Protones/química , Bombas de Protones/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...